
Waterfall Model

"Big Bang" testing, "stubs", daily build and smoke test

Document−driven process

Deliverables − baselines

Feasibility

V&V

Study

Requirements

Design

Coding

"A Rational Design Process and How to Fake It"

V&V

V&V

V&V Test

V&V

Prototyping − "Do it twice"

to assess feasibility

to verify requirements

Or develop system with less functionality or quality attributes

May only be a front end or executable specification

3 approaches:

1) Use prototyping as tool for requirements analysis.

Need proper tools

2) Use to accomodate design uncertainty.

Prototype evolves into final product

Documentation may be sacrificed
May be less robust

Quality defects may cause problems later

3) Use to experiment with different proposed solutions
before large investments made.

Evolutionary Model

Evolutionary Models (2)

Drawbacks:

Can develop a life of its own − turns out to be product itself

Hard to change basic decisions made early

Experimental Evaluation:

Boehm: prototyping vs. waterfall

Waterfall: addressed product and process control risks better

Resulted in more robust product, easier to maintain

Fewer problems in debugging and integration due to

more thought−out design

Prototyping: addressed user interfaces better

Prototyping: users more positive and more involved

Waterfall: more robust and efficient data structures

Alavi: prototyping vs. waterfall applied to an information system

Can be an excuse for poor programming practices

Can be expensive to build

Incremental Model

Functionality produced and delivered in small increments.

Focus attention first on essential features and add functionality

Systems tend to be leaner −− fights overfunctionality syndrome

Variant: Incremental implementation only

May be hard to add features later

only if and when needed

Follow waterfall down to implementation

During requirements analysis and system design

to different priorities and at different times.

Different parts implemented, tested, and delivered according

Define interfaces that allow adding later smoothly

Define useful subsets that can be delivered

Spiral Model

Includes every other model

Risk driven (vs. document driven or increment driven)

Radius of spiral represents cost accumulated so far

Do you need one uniform process over entire project?

In requirements analysis, identify aspects that are uncertain

e.g., library:

checkout and checkin (inventory control) − relatively certain

card catalogue, user search − relatively uncertain

then have separate processes for the different parts.

