Chapter 5

Understanding Requirements

Slide Set to accompany

Software Engineering: A Practitioner's Approach, 7/e by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction with *Software Engineering: A Practitioner's Approach, 7/e.* Any other reproduction or use is prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Requirements Engineering-I

- Inception—ask a set of questions that establish ...
 - basic understanding of the problem
 - the people who want a solution
 - the nature of the solution that is desired, and
 - the effectiveness of preliminary communication and collaboration between the customer and the developer
- Elicitation—elicit requirements from all stakeholders
- Elaboration—create an analysis model that identifies data, function and behavioral requirements
- Negotiation—agree on a deliverable system that is realistic for developers and customers

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Requirements Engineering-II

- Specification—can be any one (or more) of the following:
 - A written document
 - A set of models
 - A formal mathematical
 - A collection of user scenarios (use-cases)
 - A prototype
- Validation—a review mechanism that looks for
 - errors in content or interpretation
 - areas where clarification may be required
 - missing information
 - inconsistencies (a major problem when large products or systems are engineered)
 - conflicting or unrealistic (unachievable) requirements.
- Requirements management

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Inception

- Identify stakeholders
 - "who else do you think I should talk to?"
- Recognize multiple points of view
- Work toward collaboration
- The first questions
 - Who is behind the request for this work?
 - Who will use the solution?
 - What will be the economic benefit of a successful solution
 - Is there another source for the solution that you need?

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Eliciting Requirements

- meetings are conducted and attended by both software engineers and customers
- rules for preparation and participation are established
- an agenda is suggested
- a "facilitator" (can be a customer, a developer, or an outsider) controls the meeting
- a "definition mechanism" (can be work sheets, flip charts, or wall stickers or an electronic bulletin board, chat room or virtual forum) is used
- the goal is
 - to identify the problem
 - propose elements of the solution
 - negotiate different approaches, and
 - specify a preliminary set of solution requirements

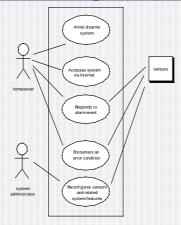
These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

5

Building the Analysis Model

- Elements of the analysis model
 - Scenario-based elements
 - Functional—processing narratives for software functions
 - Use-case—descriptions of the interaction between an "actor" and the system
 - Class-based elements
 - · Implied by scenarios
 - Behavioral elements
 - State diagram
 - Flow-oriented elements
 - · Data flow diagram

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.


Use-Cases

- A collection of user scenarios that describe the thread of usage of a system
- Each scenario is described from the point-of-view of an "actor"—a person or device that interacts with the software in some way
- Each scenario answers the following questions:
 - Who is the primary actor, the secondary actor (s)?
 - What are the actor's goals?
 - What preconditions should exist before the story begins?
 - What main tasks or functions are performed by the actor?
 - What extensions might be considered as the story is described?
 - What variations in the actor's interaction are possible?
 - What system information will the actor acquire, produce, or change?
 - Will the actor have to inform the system about changes in the external environment?
 - What information does the actor desire from the system?
 - Does the actor wish to be informed about unexpected changes?

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

7

Use-Case Diagram

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Class Diagram

From the SafeHome system ...

Sensor

name/id type location area characteristics

identify() enable() disable() reconfigure()

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.