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SUMMARY

A single exposure to drugs of abuse produces an
NMDA receptor (NMDAR)-dependent long-term
potentiation (LTP) of AMPA receptor (AMPAR) cur-
rents in DA neurons; however, the importance of
LTP for various aspects of drug addiction is unclear.
To test the role of NMDAR-dependent plasticity in
addictive behavior, we genetically inactivated func-
tional NMDAR signaling exclusively in DA neurons
(KO mice). Inactivation of NMDARs results in in-
creased AMPAR-mediated transmission that is in-
distinguishable from the increases associated with
a single cocaine exposure, yet locomotor responses
to multiple drugs of abuse were unaltered in the KO
mice. The initial phase of locomotor sensitization to
cocaine is intact; however, the delayed sensitization
that occurs with prolonged cocaine withdrawal did
not occur. Conditioned behavioral responses for
cocaine-testing environment were also absent in
the KO mice. These findings provide evidence for
a role of NMDAR signaling in DA neurons for specific
behavioral modifications associated with drug seek-
ing behaviors.

INTRODUCTION

The mesolimbic DA circuit, consisting of midbrain DA neurons in

the ventral tegmental area (VTA), that project to the nucleus ac-

cumbens (NAc) and prefrontal cortex, plays a key role in reward

and motivation and is a major target of abused drugs (Wise,

2004). Repeated exposure to drugs of abuse increases their psy-

chomotor stimulant effects and elicits conditioned preferences

for neutral stimuli in animal models of addiction. These behaviors

are thought to reflect increased incentive motivation for drug ac-

quisition and contextual or cue-evoked, drug-seeking behavior

(Robinson and Berridge, 1993). Two classical models used to

study these correlates of addiction are locomotor (or behavioral)

sensitization and conditioned place preference (CPP) (Etten-

berg, 1989; Kalivas and Stewart, 1991). The acquisition and ex-

pression of locomotor sensitization and CPP are attenuated by

glutamate receptor antagonists, strongly implicating glutamate

signaling and synaptic plasticity in the mesolimbic DA circuit

as an underlying mechanism in addiction.
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Plasticity at excitatory glutamatergic synapses plays a critical

role in memory acquisition and consolidation. Signal trans-

duction cascades, initiated by Ca2+ influx through NMDARs,

mediate a rapid and sustained enhancement of glutamatergic

synapses by regulating local synaptic strength through the mod-

ulation of AMPAR number and function (Malinow and Malenka,

2002). Drugs of abuse evoke an NMDAR-dependent, long-term

potentiation (LTP) of AMPAR currents in DA neurons that may re-

flect an early memory trace in the acquisition of drug dependence

(Borgland et al., 2004; Liu et al., 2005; Saal et al., 2003; Ungless

et al., 2001). Functionally, LTP of AMPAR currents in VTA DA neu-

rons following drug exposure is coincident with increased AMPA-

evoked DA release that is thought to underlie the initiation of drug

sensitization (Dunn et al., 2005; Kalivas and Alesdatter, 1993;

Vezina and Queen, 2000; Zhang et al., 1997).

A dichotomy currently exists regarding the role of glutamate

plasticity within VTA DA neurons as a critical neural adaptation un-

derlying drug-seeking behavior (Tzschentke and Schmidt, 2000;

Vanderschuren and Kalivas,2000). Site-specific injection of gluta-

mate antagonists into the VTA during repeated drug administra-

tion blocked behavioral sensitization (Dunn et al., 2005; Kalivas

and Alesdatter, 1993; Vezina and Queen, 2000) and attenuated

CPP (Harris and Aston-Jones, 2003; Harris et al., 2004). However,

repeated infusion of NMDA directly into the VTA did not induce

a sensitized response to a systemic cocaine injection (Schenk

and Partridge, 1997). In addition, other groups have demon-

strated day-to-day increases in locomotor responding to amphet-

amine or morphine when NMDAR antagonists were present dur-

ing testing (Ranaldi et al., 2000). Disparities regarding the role of

AMPARs also exist. Viral overexpression of the AMPAR subunit

GluR1 produced a sensitized behavioral response to acute mor-

phine treatment (Carlezon et al., 1997), and infusionof AMPAR an-

tagonists into the VTA prevented sensitization (Dunn et al., 2005).

However, mice with a genetic deletion of the AMPAR subunit

GluR1 lacked cocaine-induced plasticity in DA neurons, yet be-

havioral sensitization was normal (Dong et al., 2004).

Significant differences in the methodologies used in these

studies could explain the discrepancies observed, but they all

share a lack of cell specificity. Although NMDAR antagonists

were injected directly into the VTA, other cell types in this brain

region likely express these receptors, such as GABAergic inter-

neurons, GABAergic projection (Korotkova et al., 2004; Olson

and Nestler, 2007), and glutamatergic neurons (Yamaguchi

et al., 2007). Similarly, viral-mediated delivery of GluR1 likely in-

fected both DA and non-DA neurons within the VTA, and the

GluR1 knockout mice lacked this subunit in all cells.
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To examine the cell-specific requirements of glutamate signal-

ing in DA neurons for the long-term changes associated with

drug exposure, we selectively inactivated NMDAR signaling in

these cells. Absence of functional NMDAR increased synaptic

AMPAR currents in DA neurons that were similar to the changes

associated with a single cocaine exposure in vivo. Acute re-

sponses to the locomotor-stimulating effects of cocaine and

other drugs of abuse were unaltered in mice lacking functional

NMDAR in DA neurons, and the induction of behavioral sensitiza-

tion progressed normally; however, cue-evoked drug seeking

and the enhancement of drug craving following withdrawal

were significantly impaired.

RESULTS

Selective Inactivation of NMDARs in DA Neurons
NMDARs are heteromeric ion channels that are critically depen-

dent on the NR1 subunit for proper channel function. Cell-spe-

cific, conditional inactivation of the NR1 subunit prevents

NMDAR-mediated currents, blocks the induction of LTP, and

impairs some forms of learning and memory (Tsien et al., 1996).

To determine if NMDAR-dependent plasticity in DA neurons is

critical for the neural adaptations associated with repeated

drug administration, we used a genetic approach to selectively

inactivate the NR1 subunit of the NMDARs in DA neurons. Cell-

specific inactivation of the floxed NR1 (Grin1lox) allele (Tsien

et al., 1996) was achieved by crossing these mice with mice ex-

pressing Cre recombinase under the control of the endogenous

DA transporter gene (Slc6a3Cre) (Zhuang et al., 2005). For the ex-

periments described here, Slc6a3+/Cre; Grin1D/lox (knockout, KO)

mice and Slc6a3+/Cre; Grin1+/lox (control) mice were used

(Figure 1A). Both KO and control mice have one functional allele

for the DA transporter and one functional allele of NR1, except in

DA neurons where Cre-mediated recombination should inacti-

vate the remaining Grin1lox allele. KO mice were born at the

expected Mendelian ratio and were visibly indistinguishable

from control mice.

To confirm that Cre-mediated recombination in Sl6a3Cre mice

is localized to DA neurons, we crossed these mice with

Rosa26YFP reporter mice (Srinivas et al., 2001). Double immuno-

fluorescence labeling for yellow fluorescent protein (YFP) and

tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine

synthesis, revealed a high level of coexpression in the midbrain,

but not in the overlying cortex or hippocampus (Figures 1B and

1C). In addition, we detected YFP in other cells known to express

TH and DAT, such as the hypothalamus and olfactory bulb (data

not shown), similar to that previously described (Coulter et al.,

1996; Zhuang et al., 2005; Turiault et al., 2007). The extent of

Grin1 gene inactivation in KO mice was examined by immunohis-

tochemistry using antibodies against NR1. KO mice displayed no

observable expression of NR1 in TH-expressing midbrain DA

neurons compared to controls; however, NR1 expression in

non-DA cells in the midbrain was normal (Figure 1D).

To confirm a lack of functional NMDARs, whole-cell, voltage-

clamp recordings from DA and non-DA neurons were obtained

from brain slices through the VTA of KO and control mice.

DA neurons were identified by the presence of hyperpolariza-

tion-activated potassium currents (Ih) (Figure 2A) as
Figure 1. Generation and Histological Characterization of KO and

Control Mice

(A) Schematic of Slc6a3 and Grin1 alleles in control and KO mice. Wild-type

Slc6a3 allele (1), Slc6a3Cre allele (2), Grin1lox allele (3), and Grin1D allele (4).

(B) Low-power (2.53) image of immunofluoresence staining for YFP, TH, and

Hoechst nuclear stain in the midbrain of Rosa26YFP reporter mice.

(C) High-power (203) image of double immunofluoresence staining of VTA DA

neurons for TH and YFP.

(D) High-power (203) image of double immunofluoresence staining of VTA DA

neurons for TH and NR1. NR1 expression was undetectable in TH-positive

(arrows), but not TH-negative (arrow heads) neurons in the VTA of KO mice.
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previously described (Borgland et al., 2004; Saal et al., 2003;

Schilstrom et al., 2006; Ungless et al., 2001). There was no

NMDAR component of the excitatory postsynaptic current

(EPSC) in DA neurons from KO mice (Figure 2B); however,

NMDAR-mediated EPSCs were intact in non-DA neurons of

the VTA of KO mice (Figure 2B).

NMDAR activation is thought to be critical for the induction of

LTP in DA neurons (Borgland et al., 2004; Saal et al., 2003; Schil-

strom et al., 2006; Ungless et al., 2001). We monitored evoked

excitatory, postsynaptic potential (EPSP) amplitudes in DA neu-

rons from VTA slices following high-frequency afferent stimula-

tion using a spike-timing protocol of induction (Liu et al., 2005).

As predicted, we observed robust LTP in DA neurons from

control, but not KO mice (Figures 2C and 2D).

Inactivation of NMDARs and In Vivo Cocaine Exposure
Evoke Similar Changes in Synaptic AMPAR Currents
Many drugs of abuse produce an LTP of AMPAR currents in DA

neurons that is blocked by NMDAR antagonists (Borgland et al.,

2004; Liu et al., 2005; Saal et al., 2003; Ungless et al., 2001). To

determine if NMDAR activation in DA neurons is necessary for

Figure 2. Inactivation of Functional NMDAR in DA Neurons

(A) Representative traces of Ih currents used to identify DA (left) and non-DA

neurons (right).

(B) Representative traces of NMDAR and AMPAR EPSCs from DA and non-DA

neurons recorded from VTA slices of control and KO mice.

(C) LTP evoked by high-frequency afferent stimulation was not induced in DA

neurons from KO mice.

(D) Histogram representing the magnitude of percent increase in EPSP ampli-

tude 25 min after induction (*p < 0.01, Student’s t test). Data are from VTA

slices from control (n = 7) and KO (n = 6) mice and represent means ± SEM.
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cocaine-evoked LTP of synaptic AMPAR currents, we monitored

spontaneous miniature excitatory postsynaptic currents

(mEPSCs) in drug-naive and cocaine-treated mice (Figure 3A)

as previously described (Ungless et al., 2001). As predicted,

a single cocaine exposure increased mEPSC amplitude and

frequency in control mice (Figures 3B and 3C). Unexpectedly,

drug-naive KO mice also showed a significant increase in

mEPSC amplitude (16.3 ± 1.3 pA versus 10.8 ± 0.8 pA,

p < 0.01 student’s t test) and frequency (3.2 ± 0.3 Hz versus

1.6 ± 0.2 Hz, p < 0.01 student’s t test) compared to drug-naive

controls (Figures 3B and 3C). These changes were similar to

the increases associated with a single cocaine exposure (Figures

3B and 3C).

Cocaine increases postsynaptic AMPAR currents in DA

neurons without affecting presynaptic transmitter release, as

monitored by the paired-pulse ratio between two electrical stim-

uli applied at an interval of 50 ms (Ungless et al., 2001). Similarly,

we did not observe a significant difference in paired-pulse ratio in

DA neurons from control and KO mice (0.861 ± 0.056, n = 19, ver-

sus 0.941 ± 0.053, n = 25, respectively). To confirm that changes

in mEPSC amplitude and frequency observed in KO mice is due

to increased postsynaptic AMPAR currents similar to that

evoked by cocaine, we monitored AMPA-evoked EPSCs using

whole-cell voltage clamp in VTA slices from drug-naive and co-

caine-treated control and KO mice as described (Borgland et al.,

2004; Liu et al., 2005; Ungless et al., 2001). Consistent with our

data from mEPSCs, AMPA-evoked currents from KO mice

were significantly increased compared to controls (peak change

in current, 282 ± 41 pA versus 110 ± 24 pA, p < 0.01, Student’s

t test) and was not different than cocaine-treated mice (Figures

3D and 3E). These findings were confirmed by monitoring the in-

put-output relationship at various stimulus intensities. AMPAR

EPSCs were significantly larger at each stimulus intensity tested

(Figure 3F).

Because the DA transporter gene is expressed by embryonic

day 14 (Fujita et al., 1993), it is possible that early developmental

inactivation of NMDAR signaling engages compensatory

mechanisms resulting in increased synaptic AMPAR currents

(Turrigiano and Nelson, 2004). To determine whether increased

synaptic AMPAR are restricted to early developmental inactiva-

tion of NMDAR, we injected an adenoassociated virus (AAV)

expressing a Cre-GFP fusion protein directly into the VTA of

3-week-old mice, a time after which DA dependence has devel-

oped (Zhou and Palmiter, 1995). Synaptic AMPAR currents were

monitored 3–5 days following viral injection. AAV-Cre-GFP trans-

duction of DA neurons significantly decreased NMDAR EPSCs,

increasing overall AMPAR/NMDAR ratios compared to neigh-

boring GFP-negative DA neurons (2.71 ± 0.36 versus 1.24 ±

0.12, p < 0.01). Similar to KO mice, AMPAR mEPSCs amplitude

and frequency were significantly increased in GFP-positive DA

neurons compared to GFP-negative DA neurons (Figures 3G

and 3H). These findings indicate that NMDAR inactivation

-induced increases in synaptic AMPAR currents are not

restricted to early development.

To determine whether genetic NMDAR inactivation also alters

inhibitory synaptic transmission, we measured spontaneous min-

iature IPSCs (mIPSC) in DA neurons from control and KO mice as

described (Liu et al., 2005). mIPSC amplitude (Figure 3I) and
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Figure 3. Cocaine and NMDAR Inactivation

Increase Synaptic AMPAR Currents in VTA

DA Neurons

(A) Average AMPAR miniature EPSCs (mEPSCs)

from DA neurons of drug-naive control and KO

mice 24 hr after a single cocaine (20 mg/kg) injec-

tion (mEPSCs traces are the average of 60 con-

secutive events).

(B) Histogram of average mEPSC amplitude

(**p < 0.01 compared to control, Student’s t

test).

(C) Histogram of average mEPSC frequency

(**p < 0.01 compared to control, Student’s t

test). Data collected from VTA slices from naive

control, n = 6; naive KO, n = 8; cocaine-treated

control, n = 6; and cocaine-treated KO, n = 4

(B and C).

(D) Average AMPA-evoked (2.5 mM AMPA in 50 mM

cyclothiazide, ctz) EPSCs in DA neurons from

drug-naive control and KO mice 24 hr after a single

cocaine (20 mg/kg) injection.

(E) Histogram of average change in AMPA-evoked

currents 150 s after AMPA application (p < 0.01

compared to control, Student’s t test). Data col-

lected from VTA slices from naive control, n = 7;

naive KO, n = 7; cocaine-treated control, n = 6;

and cocaine-treated KO, n = 4 (D and E).

(F) Input-output curves from stimulus-evoked

AMPAR EPSCs expressed as a fixed increase

over threshold (*p < 0.05, **p < 0.01 compare to

control, Student’s t test). Data collected from VTA slices from naive control, n = 6; naive KO, n = 7; cocaine-treated control, n = 6; and cocaine-treated KO, n = 4.

(G) Histogram of average mEPSC amplitude from AAV-Cre-GFP transduced and control DA neurons.

(H) Histogram of average mIPSC frequency. Data collected from GFP-negative, n = 9, and GFP-positive, n = 8 cells (G and H).

(I) Histogram of average mIPSC amplitude.

(J) Histogram of average mIPSC frequency. Data collected from VTA slices from control, n = 8, and KO, n = 9 (I and J).

Data expressed as means ± SEM.
frequency (Figure 3J) were not different between the two

groups, indicating that chronic NMDAR inactivation selectively

modulates excitatory, but not inhibitory synaptic transmission.

Altered Glutamate Signaling in DA Neurons of KO Mice
Does Not Affect Locomotor-Stimulating Effects of Drugs
Increased AMPAR signaling in DA neurons is correlated with

elevated DA release and heightened responses to the psycho-

motor-stimulating effects of drugs of abuse (Carlezon et al.,

1997; Zhang et al., 1997); thus, chronic absence of NMDARs

and consequent enhancement of AMPAR currents might alter

the excitability of these cells resulting in enhanced locomotor ac-

tivity. To determine if KO mice have heightened locomotor activ-

ity in general, we monitored their exploratory behavior during

a 90 min exposure to novel activity chambers. The time course

of habituation to novelty (Figure 4A) and cumulative locomotor

activity (Figure 4G) did not differ between the two groups. Loco-

motor activity during a single day-night cycle was also moni-

tored. Both control and KO mice were relatively inactive during

the light phase (day) and demonstrated increased activity shortly

after dark phase (night) onset that persisted for approximately

12 hr (Figure 4B).

Psychomotor-stimulating effects of drugs of abuse are

mediated by increasing synaptic DA levels in the NAc. Morphine

enhances DA release by decreasing inhibitory inputs onto DA
neurons, cocaine blocks DA reuptake, and amphetamine purges

vesicular DA pools and blocks reuptake (Vanderschuren and

Kalivas, 2000). Cumulative locomotor responses to morphine

(25 mg/kg), cocaine (20 mg/kg), or amphetamine (2.5 mg/kg) dur-

ing the 90 min after drug exposure did not differ between the two

groups (Figure 4G). In addition, the kinetics of drug-induced loco-

motor activity was similar in both groups of mice (Figures 4C–4E).

To determine if response to DA signaling is altered in KO mice,

we monitored locomotor activity in response to the D1/D5 recep-

tor agonist SKF81297 (7.5 mg/kg i.p.). We did not observe

a significant difference between KO and control mice (Figures

4F and 4G). Thus, loss of functional NMDAR in DA cells does

not significantly affect locomotor responses associated with ac-

tivation of DA signaling, suggesting that the increased AMPAR

currents in KO mice do not affect DA release, reuptake, or signal-

ing to postsynaptic cells.

The Initial Phase of Behavioral Sensitization to Cocaine
Does Not Require NMDAR Activation
NMDAR-dependent LTP of AMPAR currents following a single

cocaine injection is thought to underlie the acquisition of behav-

ioral sensitization. To determine if behavioral sensitization to

cocaine is dependent on NMDAR signaling in DA neurons, we

monitored locomotor activity in response to cocaine administra-

tion for 5 consecutive days in an activity chamber that was
Neuron 59, 486–496, August 14, 2008 ª2008 Elsevier Inc. 489
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distinct from the home cage. Repeated cocaine injections

(20 mg/kg) produced a significant increase in activity that did

not differ between control and KO mice (Figures 5A and 5B).

We also monitored locomotor activity in response to repeated

injections of 15 mg/kg cocaine but did not observe robust behav-

ioral sensitization in either group of mice (data not shown).

Because our behavioral analysis was conducted on a genetic

background in which mice were heterozygous for Grin1 and

Slc6a3, it is possible that the results were skewed by an altered

baseline response to cocaine. To eliminate this possibility, we

monitored sensitization to 20 mg/kg cocaine in wild-type mice.

Locomotor activity in response to the first cocaine injection

and the level of sensitization was not different between wild-

type (Slc6a3+/+; Grin1+/+) and control (Slc6a3+lox; Grin1Cre/+)

mice (day1 ambulations, 297 ± 68 versus 245 ± 72; and day 5

ambulations, 894 ± 213 versus 835 ± 136, respectively).

Locomotor sensitization continues to increase after cocaine

administration stops (Heidbreder et al., 1996); thus, we also mon-

itored locomotor response to cocaine (20 mg/kg) in control and

KO mice after 3 and 21 days of withdrawal. Locomotor responses

Figure 4. Novelty and Drug-Induced Loco-

motor Activity

(A) Locomotor response to novel environment

(control, n = 12, and KO, n = 13).

(B) Day-night locomotion (control, n = 9, and KO,

n = 7).

(C) Locomotor response to morphine (25 mg/kg)

(control, n = 7, and KO, n = 8).

(D) Locomotor response to amphetamine

(2.5 mg/kg) (control, n = 12, and KO, n = 13).

(E) Locomotor response to cocaine (20 mg/kg)

(control, n = 15, and KO, n = 12).

(F) Locomotor response to D1/D5 receptor agonist

SKF 81297 (7.5 mg/kg) (control, n = 7, and KO,

n = 8).

(G) Cumulative ambulations for 90 min following

exposure to a novel environment (NOV), cocaine

(COC, 20 mg/kg i.p.), amphetamine (AMP,

2.5 mg/kg i.p.), morphine (MOR, 25 mg/kg s.c.),

or D1/D5 receptor agonist SKF 81297 (SKF,

7.5 mg/kg i.p.).

Data are presented as mean ± SEM.

after 3 days of cocaine withdrawal were

not significantly different in the two

groups; however, after 21 days of with-

drawal there was a significant enhance-

ment of behavioral sensitization in control

mice that was not observed in KO mice

(Figures 5A and 5C; repeated-measures

ANOVA, F(7,175) = 3.93, p < 0.05).

Conditioned Behavioral Responses
to Cocaine Depend on Functional
NMDAR in DA Neurons
After drug sensitization, locomotor activ-

ity increases when a rodent is placed in

the conditioning chamber; this is thought

to reflect cue- (or environment-) induced

incentive motivation (Berridge and Robinson, 1998). To deter-

mine if functional NMDAR signaling in DA neurons is necessary

for this context-dependent anticipatory locomotor activity, we

monitored the initial locomotor responses of mice during the

daily habituation phase that preceded cocaine administration

in the sensitization experiment. The highest level of locomotor

activity occurred during the first 15 min of re-exposure to the

conditioning chamber (Figure 5D). Analysis of cumulative loco-

motor responses during the first 15 min revealed significantly en-

hanced anticipatory locomotor responses on the fifth day of

training and after 3 or 21 days of cocaine withdrawal by control

but not by KO mice (Figure 5E; repeated-measures ANOVA:

F(6,150) = 3.88, p = 0.001).

To determine if CPP for cocaine is also attenuated in KO mice,

we used a balanced, unbiased CPP paradigm. Baseline prefer-

ence for the conditioning chambers was determined during a 20

min pretest; we did not observe a significant chamber preference

in either group (data not shown). The next day, control and KO

mice were given either cocaine (10 mg/kg or 20 mg/kg) or saline

in contextually distinct compartments of a three-compartment
490 Neuron 59, 486–496, August 14, 2008 ª2008 Elsevier Inc.
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CPP box. Following one, two, or three exposures to cocaine, con-

trol mice, but not KO mice, displayed a significant preference for

the drug-paired side at both 10 mg/kg (Figure 6A; repeated-mea-

sures ANOVA, test day F(3,60) = 3.02, p = 0.036; post hoc analysis

control, all test days versus baseline p < 0.05; KO, p > 0.4, no sig-

nificant genotype 3 day interaction was detected) and 20 mg/kg

(Figures 6C and 6E; repeated-measures ANOVA, day F(3,60) =

2.83, p = 0.045; post hoc analysis control, all test days versus

baseline p < 0.05; KO, p > 0.6, no significant genotype 3 day in-

teraction was detected). Locomotor responses to cocaine during

pairing sessions did not differ between the two groups (Figures 6B

and 6D).

To examine whether KO mice can learn a context-dependent

association, we monitored conditioned place aversion (CPA) to

a noxious stimulus. Similar to cocaine CPP, mice were given

three pairing sessions of saline in one compartment and nalox-

one (100 mg/kg s.c.) in the other compartment. On intermittent

days, mice were tested for CPA. Both KO and control mice dem-

onstrated a statistically significant CPA to naloxone during the

third test session (Figure 6F).

Conditioned Behavioral Responses to Cocaine Depend
on Functional NMDAR in the VTA
To confirm that the deficits observed in contextual reward asso-

ciation are due to a disruption of mesolimbic DA neurons and not

Figure 5. Behavioral Sensitization to

Cocaine

(A) Cumulative 90 min locomotor response to

cocaine (20 mg/kg, i.p.) from control (n = 15) and

KO (n = 12) mice across days; DW, days with-

drawal (*p < 0.05 compared to control treatment

day 5 and KO 21 DW).

(B) Ambulations per 5 min bin in response to

cocaine on treatment days 1 and 5.

(C) Ambulations per 5 min bin in response to

cocaine after 21 days of withdrawal (21 DW).

(D) Locomotor activity per 5 min bin on treatment

days 1 and 5 during 90 min habituation to activity

chambers.

(E) Average anticipatory locomotor activity during

the first 15 min of the habituation phase (*p <

0.05 compared to treatment day 1).

Data are presented as means ± SEM.

other DAT-expressing cells, we injected

AAV-Cre-GFP directly into the VTA. Al-

though AAV-Cre-GFP viral transduction

is not restricted to DA neurons in the

VTA, it does provide anatomical specific-

ity. Two weeks following AAV-Cre-GFP

injections, mice were assessed for co-

caine CPP. Following completion of the

CPP paradigm, viral transduction of DA

neurons was determined by counting

the number of TH-positive cells in the

VTA that were colabeled with nuclear

GFP (Figure 7A). We did not observe

a significant effect of viral injection on

the overall number or health of TH-positive neurons (Figure 7A

and data not shown). Because CPP scores for mice with <50%

TH/GFP colabeling (average % TH/GFP, 19% ± 8.9%) were

not different than heterozygous control-injected mice, we com-

bined them into a single control group. Average CPP scores

across days revealed a significant difference between mice

with >50% GFP/TH colabeling (VTA KO, average % TH/GFP,

72% ± 5.3%) and controls (repeated-measures ANOVA, day

F(3,45) = 9.2496, p < 0.001; post hoc analysis controls, all test

days versus baseline p < 0.01; VTA KO, p > 0.2 all test days ver-

sus baseline; Figure 7B). Locomotor responses to cocaine did

not differ between groups (Figure 7C). VTA KO mice showed

elevated locomotor activity during baseline testing compared

to controls (7,102 ± 680 cm versus 10,537 ± 1,149 cm; p < 0.01,

Students t test); however, we did not detect differences on sub-

sequent test days (4460 ± 424 cm versus 6164 ± 916 cm, test 1;

5242 ± 610 cm versus 5132 ± 838 cm, test 2; 5211 ± 726 cm ver-

sus 5402 ± 701). These findings indicate that functional NMDARs

are necessary in the VTA for contextual reward association.

DISCUSSION

Selective genetic inactivation of NMDARs in DA neurons

increased synaptic AMPAR currents, and the magnitude of the in-

crease was similar to that observed after a single cocaine
Neuron 59, 486–496, August 14, 2008 ª2008 Elsevier Inc. 491
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exposure in vivo. The increase in AMPAR current in KO mice was

unexpected because it had not been reported following genetic

inactivation of NMDAR in other cell types (Iwasato et al., 2000; Na-

kazawa et al., 2002; Tsien et al., 1996); however, since the submis-

sion of this manuscript, two other studies have reported increased

synaptic AMPAR currents similar to those described here (Ultanir

et al., 2007; Adesnik et al., 2008). Increased synaptic AMPAR cur-

rents following pharmacological blockade of NMDAR has been

suggested to be a process of synaptic scaling restricted to a crit-

ical period of synaptic development (Turrigiano and Nelson,

2004); however, the changes we observed in synaptic AMPAR

currents following viral-mediated NMDAR inactivation in DA neu-

rons from 3-week-old mice suggest that NMDAR-mediated syn-

aptic scaling of AMPAR is likely not restricted to a critical period

of DA neuron development because these changes were ob-

served after DA dependence develops in mice (Zhou and Pal-

miter, 1995; Kim et al., 2002).

Although the mechanism and function of synaptic scaling are

not fully resolved, increasing evidence indicates that activation

of NMDARs and its downstream targets play an important role

in establishing synaptic AMPAR levels beyond LTP and LTD

(Isaac et al., 2007). Inhibition NMDAR-mediated miniature synap-

tic events during chronic action potential blockade leads to rapid

(<60 min) changes in synaptic AMPARs that is dependent on local

protein synthesis (Sutton et al., 2006). These changes are likely to

Figure 6. Conditioned Place Preference for

Cocaine

(A) Percent preference for cocaine-paired com-

partment during baseline (Base) and following 1,

2, or 3 pairings with cocaine at 10 mg/kg; n = 12

control mice and n = 10 KO mice (*p < 0.05

compared to baseline).

(B) Distance traveled during conditioning to

cocaine (10 mg/kg).

(C) Percent preference for cocaine-paired com-

partment during baseline (Base) and following 1,

2, or 3 pairings with cocaine at 20 mg/kg; n = 10

control mice and n = 12 KO mice (*p < 0.05

compared to baseline).

(D) Distance traveled during conditioning to

cocaine (20 mg/kg).

(E) Representative trace of locomotor activity dur-

ing baseline (Base) and test day 3 (test) in a control

and KO mouse.

(F) Percent preference for naloxone-paired com-

partment during baseline (Base) and following 1,

2, or 3 pairings with naloxone at 100 mg/kg (con-

trol n = 8 and KO n = 8) (*p < 0.05 compared to

baseline).

Data are presented as mean ± SEM.

involve downstream targets of NMDAR

activation, such as the immediate-early

gene Arc/Arg3.1. Consistent with this

idea, genetic inactivation of Arc/Arg3.1

leads to similar increases synaptic

AMPAR currents (Shepherd et al., 2006).

Our observations that NMDAR inactiva-

tion leads to synaptic scaling of AMPAR

currents that resembled the LTP induced by cocaine treatment

allowed us to ask whether increased AMPAR currents in DA

neurons is sufficient to elicit a sensitized phenotype. If elevated

AMPAR currents observed in the KO mice increased the overall

excitability of DA neurons, then we predicted that basal activity

and locomotor responses to acute drug exposure would be

augmented. Instead, we found that acute responses to drugs of

abuse and behavioral sensitization to repeated cocaine were

normal. These findings indicate that increased AMPAR currents

are not sufficient to evoke a sensitized response and that the

induction of sensitization occurs without further increasing the

amplitude or frequency of AMPAR currents.

Our results related to drug sensitization appear to be at odds

with some, but not all, pharmacological and electrophysiological

studies implicating NMDAR-dependent LTP of AMPAR currents

in DA neurons for the induction of behavioral sensitization. These

differences may not be mutually exclusive. Repeated intra-VTA

infusion of an NMDAR agonist does not evoke a sensitized re-

sponse to a subsequent systemic cocaine injection (Schenk

and Partridge, 1997); however, repeated intra-VTA infusion of

an NMDAR antagonist blocks the induction of behavioral sensiti-

zation (Kalivas and Alesdatter, 1993; Vezina and Queen, 2000).

These findings suggest that NMDAR-dependent LTP of AMPAR

currents following acute drug exposure are necessary for the in-

duction of behavioral sensitization but are not sufficient to evoke
492 Neuron 59, 486–496, August 14, 2008 ª2008 Elsevier Inc.
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a sensitized response. Consistent with this idea, a single expo-

sure to cocaine increases the magnitude of AMPAR LTP in DA

neurons that directly correlates to the acute increase of locomo-

tor activity; however, after repeated exposure to cocaine, the

correlation between synaptic strength and sensitization is lost

(Borgland et al., 2004). Transient LTP of AMPAR currents may

be necessary to initiate long-term changes in DA neurons that

are critical for sensitization to be expressed. Numerous changes

in DA neurons following cocaine exposure have been linked to

sensitization involving activation of neurotrophin signal transduc-

tion cascades (Berhow et al., 1995, 1996; Messer et al., 2000),

Figure 7. Conditioned Place Preference for Cocaine Following

NMDAR Inactivation in the VTA

(A) Bilateral distribution of GFP-positive cells in the VTA labeled with TH immu-

nofluoresence from a mouse with >50% colabeling (top) and <50% colabeling

(bottom).

(B) Average percent preference score during baseline and across test days in

VTA KO (n = 8) and control (n = 9) mice.

(C) Distance traveled during 20 min cocaine-pairing sessions.

Data are presented as mean ± SEM.
changes in gene expression regulated by cAMP response-ele-

ment binding protein (Olson et al., 2005), metabotropic glutamate

signaling (Chiamulera et al., 2001; Bellone and Luscher, 2006;

Mameli et al., 2007), and GABA singling (Liu et al., 2005). A mech-

anism in which NMDAR-dependent LTP of AMPAR currents is

necessary, but not sufficient for behavioral sensitization would

explain why increased AMPAR currents in these KO mice does

not evoke a sensitized response to acute drug exposure and

why sensitization develops normally. Nonetheless, our current

findings cannot rule out the possibility that NMDAR on other cells

in the VTA, such as GABA neurons, are critical for sensitization.

Infusion of NMDAR antagonists increases locomotor activity

that is blocked by a GABA agonist (Narayanan et al., 1996). In ad-

dition, we observed increased locomotor activity in response to

novelty when NMDARs were indiscriminately inactivated in the

VTA that was not observed when NMDARs were selectively inac-

tivated in DA neurons, suggesting that NMDAR signaling in non-

DA neurons may be important for regulating locomotor activity.

Behavioral sensitization after cocaine withdrawal is impaired in

KO mice. This is consistent with the observation that NR1 expres-

sion increases following chronic cocaine administration (Fitzger-

aldetal., 1996) and following prolongedcocaine withdrawal (Loftis

and Janowsky, 2000). In addition, analysis of human cocaine-

overdose victims revealed significantly increased NR1 mRNA

levels in the VTA (Tang et al., 2003). These delayed increases in

NR1 expression may account for the increase in behavioral sen-

sitization that occurs during withdrawal. Prolonged drug absti-

nence increases the probability of cue-induced drug craving in

humans and rats (Gawin and Kleber, 1986; Grimm et al., 2001),

suggesting that changes in NMDAR signaling in VTA DA neurons

may be a critical molecular substrate for the enhanced drug crav-

ing that escalates during withdrawal (Grimm et al., 2001).

The conditioned-locomotor response to cocaine-testing envi-

ronment (without cocaine administration) and the CPP for the

chamber where cocaine was administered are thought to require

learning to associate the hedonistic effect of the drug with the

environment in which it was experienced. Thus, the lack of antic-

ipatory locomotor activity and CPP for the environment in which

cocaine was administered to KO mice suggests that NMDAR in

DA neurons plays a critical role in contextual reward association.

It is possible that a lack of NMDAR in DA neurons might impair

burst firing by these cells (Overton and Clark, 1997). Bursts of

DA are thought to imprint salient information in forebrain regions

(Nicola et al., 2000); thus, a lack of cocaine CPP could be due to

compromised NMDAR-dependent burst firing by DA neurons.

In conclusion, the present study demonstrates that inactiva-

tion of NMDARs exclusively in DA neurons impairs contextual re-

ward association for cocaine and withdrawal-induced increases

in sensitization. Together, these findings support a role for

NMDAR-dependent modulation of DA neurons in cue-induced

relapse to drug seeking.

EXPERIMENTAL PROCEDURES

Animals

Generation of Slc6a3+/cre, Grin1D/lox Mice

Due to potential transient expression of Slc6a-Cre in germ cells, one copy of the

floxed Grin1 allele was inactivated (Grin1D/+) by a genetic cross with Mox2-Cre
Neuron 59, 486–496, August 14, 2008 ª2008 Elsevier Inc. 493
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mice. Male Slc6a3+/Cre, Grin1D/+ mice were bred with female Grin1lox/lox mice.

DNA of offspring was used to monitor ectopic recombination of the Grinlox allele

in non-DA cells by PCR. The Grinlox allele was genotyped by PCR primers (for-

ward, 50-AGATACAAGACCCTGACT; reverse, 50-AGATGGTTGTGTTGTGAG)

flanking the 50 loxP site. The Grin1D allele was genotyped using the same Grinlox

forward primer and a reverse primer (50-CACTTGAGTAGCGCCAAGTGC) in the

Pgk promoter of the Pgk-Neomycin cassette.

Behavior

All animal protocols were approved by the University of Washington, and

University of California, San Francisco, Institutional Animal Care and Use

Committees.

Locomotor activity was measured as consecutive beam breaks in activity

chambers (San Diego Instruments, San Diego, CA). Prior to drug administra-

tion, animals were habituated to saline injections for 2 consecutive days in lo-

comotor chamber; on the third day, animals were habituated for 90 min prior to

drug injection.

CPP was measured as percent of time spent in cocaine-paired compart-

ments, activity was monitored with a video acquisition system (Canopus Me-

diaCruise, Tokyo, Japan), and data were analyzed using Ethovision software

(Noldus Information Technology, Leesburg, VA). Mice were paired using an

unbiased conditioning paradigm, such that an equal number of mice received

cocaine in the preferred and nonpreferred chamber (Heusner and Palmiter,

2005).

Viral Injections

AAV-Cre-GFP virus contains an open reading frame encoding Cre-EGFP fu-

sion protein with a myc tag and nuclear localization signal at the N terminus.

It is driven by the cytomegalovirus-chicken beta-actin (CBA) promoter and is

followed by a woodchuck postregulatory element (WPRE) and bovine growth

hormone (bGH) polyadenylation sequence. It was prepared by transfection of

HEK cells with helper plasmids and a plasmid expressing the AAV1 coat pro-

tein. The virus was purified by iodixanol and Q column procedures and titered

at 1.2 3 1012 particles/ml. For viral injection experiments, mice were anesthe-

tized with ketamine 100 mg/kg, xylazine 20 mg/kg, and acepromazine 0.6 mg/

ml and injected with 0.5 ml AAV-Cre-GFP bilaterally into the VTA using stereo-

taxic coordinates (x = 0.5, y = 3.5, and z = 4.5; Paxinos and Franklin, 2001).

Mice were allowed recover for 2 weeks prior to behavioral testing. Slice elec-

trophysiology was performed 3 to 5 days after viral injections.

Immunohistochemistry

Proteins were detected with primary antibodies to tyrosine hydroxylase

(monoclonal antibody 1:1000, Chemicon, Temecula, CA), NR1 (polyclonal an-

tibody 1:100; Chemicon, Temecula, CA), and YFP (polyclonal antibody 1:1000;

Molecular Probes, Eugene, OR). Primary antibodies were detected using CY2-

or CY3-conjugated, goat anti-mouse and goat anti-rabbit antibodies (1:200,

Jackson Immunolabs, West Grove, PA).

VTA Slice Preparations

VTA slices from young adult mice (p25 to p35) were prepared as previously de-

scribed (Ungless et al., 2001). In brief, mice were anesthetized with halothane

and killed. A block of tissue containing midbrain was sliced in the horizontal

plane (190 mm) in ice-cold low Ca2+ artificial cerebrospinal fluid (ACSF). Slices

were then transferred to a holding chamber containing ACSF, in mM, 126

NaCl, 1.6 KCl, 1.2 NaH2PO4, 1.2 MgCl2, 2.5 CaCl2, 18 NaHCO3 and 11 glucose

and equilibriated at 31�C–34�C for at least 1 hr. All solutions were bubbled with

95% O2/5% CO2 and perfused over the slice at a rate of 2.5 ml/min.

Electrophysiology

Whole-cell recordings were performed using an Axopatch 1D amplifier (Axon

Instruments, Foster City, CA). For EPSCs recordings, electrodes (2–6 MU)

contained in mM: 120 cesium methansulfonic acid, 20 HEPES, 0.4 EGTA,

2.8 NaCl, 5 TEA-Cl, 2.5 MgATP, 0.25 MgGTP (pH 7.2–7.4). Picrotoxin (100 mM)

was added to the ACSF for recording, to block GABAA receptor-mediated

IPSCs.

NMDAR or AMPAR traces were constructed by averaging 15 EPSCs elicited

at +40 mV or at �70 mV. NMDAR responses were calculated by subtracting

the average response in the presence of 50 mM D-APV (AMPAR only) from
494 Neuron 59, 486–496, August 14, 2008 ª2008 Elsevier Inc.
that recorded in its absence. AMPA mEPSCs were collected using Clampex

(Axon Instruments) from cells voltage-clamped at �70 mV in the presence of

lidocaine (500 mM) and of D-APV (50 mM) (120 sweeps for each cell, 1 s per

sweep) and analyzed using Mini Analysis program (Synaptosoft, Decatur,

GA). Detection limit was set to include only events >7 pA, <1 ms rise time,

and <3 ms decay time.

For mIPSCs recordings, electrodes (2–6 MU) contained in mM: KCl 128,

NaCl 20, MgCl2 1, EGTA 1, CaCl2 0.3, Mg-ATP 2, GTP 0.25, buffered with

HEPES 10 (pH 7.2–7.4). Neurons were voltage-clamped at �70 mV. D-APV

(50 mM) and CNQX (100 mM) were added to the ACSF for recording to block

NMDAR- and AMPAR-mediated synaptic currents and lidocaine (500 mM), to

abolish action potential-driven IPSCs. mIPSCs were measured as previously

described (Bonci and Williams, 1997). For evoked excitatory postsynaptic po-

tentials (EPSPs), recordings electrodes (2–6 MU) contained 0.95% KOH (v/v),

0.76% methanesulfonic acid (v/v), 0.18% hydrochloric acid (v/v), 20 mM

HEPES, 0.2 mM EGTA, 2.8 mM NaCl, 2.5 mg/ml MgATP, and 0.25 mg/ml

GTP (pH 7.2–7.4). Neurons were current-clamped at�70 mV, and LTP was in-

duced by using a spike-timing protocol as previously described (Liu et al.,

2005). Twenty bursts of EPSP spike pairs were delivered, with each burst con-

sisting of five paired stimuli delivered at 10 Hz (interburst interval of 5 s). The

postsynaptic spikes were evoked �5 ms after the onset of EPSPs by injecting

depolarizing current pulses (1–2 nA, 3 ms). The magnitude of LTP was com-

puted by averaging 30 consecutive EPSPs 5 min before and 25 min after the

end of the induction protocol.
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